

N

http://www.ifconnection.de/~tm

PD
F_
ci
rc
le
()

P
D
F
_
s
e
t
_
f
o
n
t
(
)PDF_arc()

PDF_show() PD
F_
li
ne
to
()

PD
F_
op
en
_T
IF
F(
)

PD
F_
ar
c(
)

PDF

PDFlib

Reference Manual

T
h

o
m

a
s

M
e

rz

API Reference for PDFlib 0.6, a C library for dynamically generating PDF files

http://www.ifconnection.de/~tm

Contents

1 Introduction

5

2 PDFlib Programming

7

2.1 A Programming Classic in C

7

2.2 Scripting with Perl, Tcl, and Python

8

ii Contents

2.3 General Programming Issues 10
2.4 Coordinate System and Vector Graphics 11

2.4.1 The Coordinate System 11
2.4.2 The Graphics States 11

2.5 Text Output and Fonts 13
2.5.1 Font Embedding and AFM Files 13
2.5.2 Character Sets and Encoding 13

2.6 Raster Images 14
2.7 Color Spaces 15

2.7.1 Color Spaces for Text and Graphics 15
2.7.2 Color Spaces for Raster Images 15

2.8 Binary Output and Compression 15
2.8.1 Binary and ASCII Output 15
2.8.2 Compression 15

3 PDFlib API Reference 16
3.1 Data Structures 16
3.2 General Functions 16
3.3 Error Handling 17
3.4 Text Functions 18
3.5 Graphics Functions 19

3.5.1 Graphics State and Coordinate System 19
3.5.2 Basic Drawing 20
3.5.3 Using the Path 21

3.6 Color Functions 21
3.7 Image Functions 22
3.8 Hypertext Functions 23
3.9 Convenience Stuff 24
3.10 Optimization Techniques 24
3.11 General Restrictions 24

4 Supplied Library Clients

25

5 Environment Bindings

27

5.1 C and C++ Language Bindings

27

5.2 Perl, Tcl, and Python Bindings

27

5.3 Common Gateway Interface (CGI)

28

5.4 Functional Programming

28

5.5 Future Bindings

29

Contents iii

6 The PDFlib License 30

7 References 31

8 Revision History 32

Index 35

1 Introduction

What is PDFlib?

PDFlib is a library of C routines which allow you to pro-

grammatically generate files in Adobe’s Portable Document Format PDF.

PDFlib acts as a backend processor to your own programs. While you (the

programmer) are responsible for retrieving or maintaining the data to be

processed, PDFlib takes over the task of generating the PDF code which

graphically represents your data. While you must still format and arrange

Chapter 1: Introduction 5

your text and graphical objects, PDFlib frees you from the internals and in-

tricacies of PDF. Although being far from complete, PDFlib already offers

many useful functions for creating text, graphics, images and hypertext el-

ements in PDF files.

PDFlib features. The PDFlib API offers the following major features:

> PDF documents of arbitrary length and page formats

> text output in different fonts

> the ability to embed PostScript font descriptions

> common vector graphics primitives – lines, curves, arcs, rectangles, etc.

> read PostScript font metrics from AFM files

> process common graphics file formats, e.g. TIFF, GIF, JPEG

> generate hypertext elements such as bookmarks

> features supported in PDF but not accessible in Acrobat software, e.g.,

page transition effects like shades and mosaic.

All of these may be achieved by using a simple API without the application

programmer being directly involved with PDF objects or operators.

What can I use PDFlib for? PDFlib’s primary target is creating dynamic

PDF on the World Wide Web. Similar to HTML pages dynamically generated

with a CGI script on the Web server, you may use a PDFlib program for dy-

namically generating PDF reflecting user input or some other dynamic da-

ta, e.g. data retrieved from the Web server’s database. The PDFlib approach

offers several advantages as opposed to creating PDF from PostScript files

with Acrobat Distiller:

> The PDFlib »driver« can be integrated directly in the application generat-

ing (or otherwise handling) the data, eliminating the convoluted cre-

ation path application–PostScript–Acrobat Distiller–PDF.

> As an implication of this straightforward process, PDFlib is by far the

fastest PDF-generating method, making it perfectly suited for the Web.

> PDFs need not be created ahead of time and stored on the server, but can

be generated if needed. This is a big win not only if you want to deal with

dynamic data which do not exist prior to the Web interaction, but also if

large amounts of data have to be handled which make it impractical to

pre-generate all the necessary PDF.

However, PDFlib is not restricted to dynamic PDF on the Web. Equally im-

portant are all kinds of converters from X to PDF, where X represents any

text or graphics file format. Again, this replaces the sequence X–PostScript–

PDF with simply X–PDF, which offers many advantages for some common

graphics file formats like GIF or JPEG. Using such a PDF converter, batch

converting lots of text or graphics files is much easier than using the Adobe

Acrobat suite of programs. Several converters of this kind are supplied with

the library.

Which platforms are supported?

PDFlib is a portable ANSI C library which

6 Chapter 1: Introduction

may be used on any reasonable operating system platform. Although being

developed and tested on Unix and Windows NT systems, the library does

not depend on any Unix specific features and may well be used on other

platforms. Actually, since the library doesn’t need any user interface, port-

ing to other platforms is simply a matter of arranging a suitable build pro-

cess. The supplied library clients, however, use Unix-style command line

options which may not be considered appropriate for other platforms.

Scripting support. PDFlib not only offers an ANSI C programming inter-

face but may also be used from within scripting languages. Currently Perl,

Tcl, and Python are supported. You can call PDFlib routines (as described in

this manual) from your Perl, Tcl, or Python scripts. This greatly simplifies

the process of writing useful PDF-generating applications or scripts.

Requirements for using PDFlib. PDFlib tries to make possible PDF genera-

tion without wading through the 400 page PDF specification. While PDFlib

tries to hide technical PDF details from the user, a general understanding of

PDF is highly desirable. In order to make the best use of PDFlib, application

programmers should be familiar with the graphics model of PostScript

(and therefore PDF). However, a reasonably experienced application pro-

grammer who has dealt with any graphics API for screen display or printing

of his application data shouldn’t have much trouble adapting to the PDFlib

API which will be described in this manual.

About this manual. This manual describes the API implemented in

PDFlib. It does not describe the process of compiling the library on certain

platforms. This is covered in the accompanying text files. The function in-

terfaces described in this manual are believed to remain unchanged during

future PDFlib development. There may well be other useful functions con-

tained in the library which are not described here. Support for these, how-

ever, may be dropped in the future or – more likely – they may remain in

the library but have their interfaces changed.

This manual doesn’t even attempt to explain PDF features or internals.

Please refer to the material at the end of the manual for further reference.

2 PDFlib Programming

This chapter is meant to give you a jump start to PDFlib programming. The

supplied sample programs don’t go into details but will provide a frame-

work for writing your own applications. It is suggested that you try these

samples and then take a look at the supplied demo clients which are part of

the library distribution.

Chapter 2: PDFlib Programming 7

2.1 A Programming Classic in C
Being a well-known classic, the »Hello, world!« sample will be used for the

first PDFlib program. It uses PDFlib to generate a one-page PDF file with the

text »Hello, world!« on the page:

/* hello.c

 * PDFlib sample application

 * (c) Thomas Merz 1997-98

 */

#include <stdio.h>

#include "pdf.h"

#define FILENAME "hello.pdf"

#define FONTNAME "Helvetica-Bold"

#define FONTSIZE 24.0

void

main(int argc, char *argv[])

{

 FILE *pdffile; /* PDF output file pointer */

 PDF *p; /* pointer to the PDF structure */

 PDF_info *info; /* pointer to document info block */

 char *filename = FILENAME;

 if (argc > 1)

 filename = argv[1];

if ((pdffile = fopen(filename, "w")) == NULL) {

fprintf(stderr, "Error: cannot open PDF file %s.\n", filename);

}

 info = PDF_get_info(); /* get info block */

 info->Creator = "hello.c"; /* and fill some */

 info->Author = "Thomas Merz"; /* elements */

 info->Title = "Hello, world!";

 p = PDF_open(pdffile, info); /* open new PDF file */

 PDF_begin_page(p, a4.width, a4.height); /* start a new page */

 PDF_set_font(p, FONTNAME, FONTSIZE, winansi);

 PDF_set_text_pos(p, 50, 700);

 PDF_show(p, "Hello, world!");

 PDF_end_page(p); /* close page */

 PDF_close(p); /* close PDF document */

 exit(0);

}

That’s it! Note that we not only produced some text output but also popu-

lated some of the PDF’s document info fields with suitable values.

You will be able to gather the basic structure of a PDFlib program from

8 Chapter 2: PDFlib Programming

this sample. In order to work with the library you need a PDF object, pardon

me: a pointer to a PDF structure. This is an opaque data structure which is

used extensively in the library and is needed for almost every API call. In or-

der to create this structure, you’ll need a conventional FILE pointer for the

PDF output file and a pointer to a so-called info block. This holds general in-

formation about the PDF (visible in Acrobat’s »Document Info« box) as well

as several options for generating the file. You must allocate the info block

with the PDF_get_info() routine (and fill the elements of this block) before

opening the PDF with PDF_open().

Each page to be created must be bracketed with PDF_begin_page() and

PDF_end_page(). As you can see, each page can have its own dimensions. In

this case we used one of the predefined page sizes to create an A4-sized

page.

2.2 Scripting with Perl, Tcl, and Python
Now let’s rewrite the »Hello, world!« sample in the three supported script-

ing languages. We will start with the Perl version. It’s quite easy (admittedly

it lacks any error handling) and looks similar to the C version above:

#!/usr/bin/perl

use pdflib;

package pdflib;

$fp = fopen("hello_perl.pdf", "w");

$ip = PDF_get_info();

$ip->{Creator} = "hello.pl";

$ip->{Author} = "Thomas Merz";

$ip->{Title} = "Hello world (Perl)";

$ip->{fontpath} = "../../fonts";

$p = PDF_open($fp, $ip);

PDF_begin_page($p, $a4->{width}, $a4->{height});

PDF_set_font($p, "Helvetica-Bold", 18.0, $winansi);

PDF_set_text_pos($p, 50, 700);

PDF_show($p, "Hello world!");

PDF_continue_text($p, "(says Perl)");

PDF_end_page($p);

PDF_close($p);

Although the Tcl syntax is somewhat different, the Tcl version isn’t very

complicated either:

#!/usr/local/bin/tclsh

simple loading the shared-library:

load ./pdflib.so

using pdflib as package:

lappend is unnecessary if installed at some right place

Chapter 2: PDFlib Programming 9

lappend auto_path .

package require pdflib

doesn't yet work

#namespace import pdflib::*

set fp [fopen hello_tcl.pdf w]

set ip [PDF_get_info]

PDF_info_Creator_set $ip "hello.tcl"

PDF_info_Author_set $ip "Thomas Merz"

PDF_info_Title_set $ip "Hello world (Tcl)"

PDF_info_fontpath_set $ip "../../fonts"

set p [PDF_open $fp $ip]

PDF_begin_page $p 595 842

PDF_set_font $p Helvetica-Bold 18.0 $winansi

PDF_set_text_pos $p 50 700

PDF_show $p "Hello world!"

PDF_continue_text $p "(says Tcl)"

PDF_end_page $p

PDF_close $p

Finally, let’s try the Python version:

#!/usr/bin/python

from pdflib import *

fp = fopen("hello_python.pdf", "w")

ip = PDF_get_info()

PDF_info_Creator_set(ip, "hello.py")

PDF_info_Author_set(ip, "Thomas Merz")

PDF_info_Title_set(ip, "Hello world (Python)")

PDF_info_fontpath_set(ip, "../../fonts")

p = PDF_open(fp, ip)

PDF_begin_page(p, 595, 842)

PDF_set_font(p, "Helvetica-Bold", 18.0, winansi)

PDF_set_text_pos(p, 50, 700)

PDF_show(p, "Hello world!")

PDF_continue_text(p, "(says Python)")

PDF_end_page(p)

PDF_close(p)

Strictly speaking, the PDFlib scripting API isn’t yet documented anywhere.

However, given the similarity between the C API and the scripting API, any

reasonably experienced programmer should be able to use this C API refer-

ence manual also for scripting by looking at the examples and using his

own wits.

Note that currently there isn’t any error or exception handling with re-

10 Chapter 2: PDFlib Programming

spect to PDFlib scripting. This is obviously ridiculous and will be fixed soon.

2.3 General Programming Issues
Naming Conventions. PDFlib contains two kinds of C routines – the public

ones constitute the API, the private ones are used internally in the library.

Consequently, there are two header files: pdf.h contains all public defini-

tions to be used by a PDFlib program, whereas p_intern.h describes the un-

documented internal functions. The API functions are described in this

manual, whereas the undocumented functions are not (in order to justify

their name). Do not include p_intern.h in your own source file! If you feel

inclined to do so, most certainly you use functions in an inappropriate way

which may result in damaged PDF files!

Note that there are different naming conventions for public and private

functions: All functions to be called by PDFlib clients have names like

PDF_*(), whereas private functions are called pdf_*(). Again: Do not use

pdf_*() functions!

PDFlib Data Structures. All structures and data types to be used by library

clients are declared in pdf.h. Please refer to this include file if you encoun-

ter any unknown data types starting with PDF_. It is strongly advised to

take a look at pdf.h before starting PDFlib programming

General PDFlib Program Structure. PDFlib applications must obey certain

structural rules. It is very important to understand that PDFlib does not

check all API calls for their structural correctness (although many client

bugs are discovered and recorded in the final stage of PDF generation).

However, the rules are very easy to understand and to obey. In the API

reference, the restrictions are noted. Writing applications according to

these restrictions should be straightforward. For example, you don’t have to

think about opening a page first before closing it, etc. The main program

structure of a PDFlib application is as shown in the »Hello, world!« sample

program.

Error Handling and Programming Restrictions. In generating PDF docu-

ments with PDFlib, several classes of events may raise errors and warnings:

> external events (e.g., no disk space)

> not adhering to programming restrictions (e.g., closing a document be-

fore opening it)

> wrong parameters to API functions (e.g., trying to draw a circle with a

negative radius)

> bad data (e.g., trying to place a corrupt JPEG file)

If the library catches an error, a central error handler is called in order to

deal with the situation. There are several classes of errors: informational
Chapter 2: PDFlib Programming 11

messages, warnings, fatal errors, and PDFlib internal errors.

The default error handler issues an appropriate message on stderr in all

cases and exits in case of a fatal or internal error. The PDF output file is left

in an inconsistent state! Since this may not be adequate for a library rou-

tine, the default error handler can be replaced with a user-supplied one. A

user-defined error handler may, for example, present the error messages in

a GUI dialog box and may take other measures instead of aborting. More

details on installing a custom error handler can be found in Section 3.3, »Er-

ror Handling«.

Serious projects are strongly advised to supply their own error handler

to PDFlib!

2.4 Coordinate System and Vector Graphics
2.4.1 The Coordinate System

PDF’s default coordinate system is used within PDFlib, although this can be

changed by rotating, scaling, or translating the coordinate system. The de-

fault coordinate system has the origin in the lower left corner of the page

and uses the DTP point as its unit:

1 pt = 1 inch / 72 = 25.4 mm / 72 = 0.3528 mm

2.4.2 The Graphics States
There are several graphics state parameters in PDF which together make up

the Graphics State. See [1] for an explanation of these parameters. The fol-

lowing tables specify which of the parameters are handled in PDFlib. »NYI«

specifies that the corresponding graphics state parameter is not yet imple-

mented in PDFlib.

Special Graphics State
Parameter PDFlib implementation Default
clipping path OK page size
transform. matrix OK identity matrix
current point OK none

General Graphics State
Parameter PDFlib implementation Default
flatness OK 0
12 Chapter 2: PDFlib Programming

line cap OK 0
line dash OK solid line
line join OK 0
line width OK 1
miter limit OK 10
device-dependent parameters not supported

Color and Color Space
Parameter PDFlib implementation Default
fill color gray values or RGB triples black
stroke color gray values or RGB triples black
fill color space DeviceGray or DeviceRGB black
stroke color space DeviceGray or DeviceRGB black
rendering intent NYI black

Text State
Parameter PDFlib implementation Default
character spacing OK 0
word spacing OK 0
horizontal scaling OK 100%
leading OK 0
text font OK none
text font size OK none
text matrix OK identity matrix
rendering mode OK solid fill
text rise OK 0

2.5 Text Output and Fonts
2.5.1 Font Embedding and AFM Files

PDFlib is capable of embedding font descriptions into the generated PDF

output.

Restrictions:

> Currently only PostScript fonts can be embedded

> Font subsetting is not yet implemented
Chapter 2: PDFlib Programming 13

> Only fonts in ASCII format (PFA) are supported

> Font files must use Unix-style line ends

Alternatively, a font descriptor can be embedded instead of the font outline

data. In both cases (font outline embedding and font descriptor embed-

ding) an AFM file containing metrics information for the used font must be

supplied. In case of font embedding, a font file must also be available.

PDF and Acrobat viewers support a core set of 14 fonts which need not be

embedded in any PDF file. AFM files for these fonts are included in the

PDFlib distribution in order to allow metrics calculations for formatting

purposes. The core fonts are the following:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,

Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,

Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,

Symbol, ZapfDingbats

In order to let PDFlib find the font and AFM files, some rules must be

obeyed: The font file name must consist of the PostScript font name (i.e.,

the value of the /FontName key), the AFM file name must consist of the Post-

Script font name plus the suffix ».afm«.

PDFlib first looks for the font and metrics files in the current directory

and then in a special font directory which can be supplied in the PDF_info

block when opening a new PDF. Default value for the font path is »./fonts«,

but this may be changed in pdf.h using a macro definition.

2.5.2 Character Sets and Encoding
PDF supports several encoding methods for text fonts. PDFlib includes pro-

visions for supporting diverse encoding vectors in the generated PDF out-

put. However, encoding vector support is not yet completed. For this rea-

son, text strings used in PDFlib calls are always interpreted according to

Windows’ ANSI encoding vector.

Since Windows ANSI encoding is for the most part identical to ISO Latin

1 encoding, on Windows and Unix systems one may assume the operating

systems’ encoding vector as far as PDFlib strings are concerned.

Restriction:

> Multiple encoding vectors are not yet supported.

> Using character code 0 is not supported (since PDFlib uses C-style

strings internally).

2.6 Raster Images
Embedding raster images in the generated PDF is an important feature of

PDFlib. Although support for raster image file formats is far from complete,

PDFlib already deals with some common graphics file formats:
14 Chapter 2: PDFlib Programming

> JPEG images: PDF supports only the »baseline« flavor of JPEG compres-

sion. However, JPEG baseline images account for the vast majority of

JPEG files. Note, however, that progressive JPEGs and some other non-

baseline flavors of the JPEG image file format are not supported in PDF,

and therefore in PDFlib.

> GIF images: PDFlib contains internal GIF handling code. Regular or inter-

laced GIFs may be used.

> TIFF images: Sam Leffler’s TIFFlib can be plugged into PDFlib in order to

support zillions of TIFF compression and encoding flavors. Although

there has much to be done concering the TIFFlib integration, many TIFF

flavors can already be used.

Restrictions:

> Currently raster image output in PDF files is uncompressed.

> TIFF handling is very slow.

Embedding raster images with PDFlib is a multi-step process which is easy

to accomplish. First, the image file has to be opened with a PDF-lib function

which does a brief analysis of the image parameters. The parameters are

supplied in the returned image structure. This structure can be used in a call

to PDF_place_image(), along with positioning and scaling parameters:

if ((image = PDF_open_JPEG(p, JPEGFILENAME)) == NULL) {

fprintf(stderr,"Error: Couldn't analyze image %s - skipped.\n",

 JPEGFILENAME);

 continue;

}

scale = 1.0;

PDF_begin_page(p, image->width * scale, image->height * scale);

PDF_place_image(p, image, 0.0, 0.0, scale);

PDF_close_image(p, image);

PDF_end_page(p);

Alternatively, PDFlib can be used to embed »inline images« in PDF files with

a call to the PDF_place_inline_image() routine. [1] recommends using this

feature only for images with less than 4KB in size.

2.7 Color Spaces
2.7.1 Color Spaces for Text and Graphics

PDFlib supports two color spaces for specifying text and graphics colors:
Chapter 2: PDFlib Programming 15

DeviceGray and DeviceRGB. You can specify the gray level of text or path

objects by supplying a value between 0 and 1 (0 means black, 1 means

white).

RGB colors are specified using three byte values with the corresponding

red, green, and blue components.

Restriction:

> Other color spaces for text and graphics are not supported.

2.7.2 Color Spaces for Raster Images
Concerning raster images, more color spaces are supported than for text or

graphics. However, it isn’t necessary to directly specify the color space for

an embedded image since PDFlib automatically detects the kind of color

space needed for a particular image.

2.8 Binary Output and Compression
2.8.1 Binary and ASCII Output

PDFlib is capable of generating ASCII and binary output files. Obviously,

ASCII files may end up larger than their binary counterparts, but they are

useful for debugging or otherwise examining PDF files. ASCII/binary out-

put can be selected in the PDF_info block. By default, PDFlib generates bina-

ry files.

2.8.2 Compression
Currently, all PDFlib output is uncompressed. It is anticipated that the pub-

lic-domain ZLIB compression library will be plugged into PDFlib, supplying

a highly effective and PDF-compatible compression method which may be

applied to text, graphics, and raster images.

3 PDFlib API Reference

3.1 Data Structures
The PDFlib programmer is strongly advised to take a closer look at the inter-

face file pdf.h which defines the relevant data types and functions exported

from the library. Although this section doesn’t attempt to cover all these,

the most important data types are briefly sketched.
16 Chapter 3: PDFlib API Reference

struct PDF_info

This structure holds general information about a PDF file, such as title, cre-

ator, subject, etc. A PDF_info block is necessary for creating a new PDF doc-

ument with PDFlib. The programmer specifies the relevant information

and uses it in a call to the PDF_open() routine.

struct PDF

This is a handle used to refer to a PDF document which is to be generated by

PDFlib. The library supplies such a handle with the PDF_open() routine. The

handle has to be used throughout all operations on that particular docu-

ment. The contents of the structure are considered private to the library,

only pointers to the PDF structure are used at the API level.

struct PDF_image

This is an opaque data structure used to refer to images. The contents of

PDF_image are considered private, only pointers are used at the API level.

3.2 General Functions
PDF_info *PDF_get_info(void)

Return a pointer to a PDF_info block. The elements of this block may op-

tionally be populated with user data and must be used for creating a new

PDF file with PDF_open().

PDF *PDF_open(FILE *fp, PDF_info *info)

Use the supplied file handle fp to create a new PDF file, using the descrip-

tive elements given in the supplied info block.

void PDF_close(PDF *p)

Must be used when the PDF c onstruction is finished and shall be closed. All

internal data structures used for this particular PDF in the library, includ-

ing the info block, are deallocated.

void PDF_begin_page(PDF *p, float height, float width)

Start a new page in a PDF file. The height and width parameters are the di-

mensions of the new page in points. Note that there are convenience data

structures for most common page formats (see Section 3.9, »Convenience

Stuff«).

Restriction:

> Although PDF and PDFlib don’t impose any restriction on the usable

page size, Acrobat Reader and Exchange suffer from an architectural

limit concerning the page size. As of Acrobat 3.01, the page size can range
Chapter 3: PDFlib API Reference 17

from 1 to 45 inches (72-3240 points). This means that A0 size drawings

cannot be used with Acrobat (although they can be generated with

PDFlib). Note that other PDF interpreters (such as Ghostscript) may well

be able to deal with larger document formats.

void PDF_end_page(PDF *p)

Must be used to finish a page description.

void *PDF_malloc(size_t size, char *caller)

void PDF_free(void *mem)

These functions are used to allocate and free blocks of memory through PD-

Flib. They resemble the well-known malloc() and free() library calls and

may provide additional functionality in the future. The functions allow

tracing memory allocation within PDFlib applications. A client need not

necessarily use these PDFlib functions but may directly use the system allo-

cation routines instead.

3.3 Error Handling
The PDF_info structure contains a function pointer which refers to a PDFlib

error handler with the following signature:

void (*error_handler)(int level, const char* fmt, va_list ap)

PDFlib calls this function pointer with different error levels (information,

warning, fatal, internal problem). While informational and warning mes-

sages can be ignored, PDFlib is unable to continue if fatal or internal prob-

lems occur.

When requesting a new PDF_info block via PDF_get_info, a pointer to

PDFlib’s default error handler is included in the info block. The default error

handler prints a message describing the error on stdout. For fatal and inter-

nal problems, the error handling also calls exit(). Think of it twice: a li-

brary routine exits your program! Since this is probably not what a serious

application programmer wants, you are strongly advised to install your

own error handler in PDFlib. A custom error handler might, for example,

pop up a dialog box describing the problem and/or handle the cause of the

problem in some way appropriate for the application.

3.4 Text Functions
void PDF_show(PDF *p, char *text)

Print text in the current font and font size at the current text position.

void PDF_show_xy(PDF *p, char *text, float x, float y)
18 Chapter 3: PDFlib API Reference

Print text in the current font at position (x, y).

void PDF_set_font(PDF *p, char *fontname, float fontsize, PDF_encoding enc)

Set the current font name, font size, and encoding vector. The following

names of encoding vectors are supported: builtin, winansi, and macroman.

void PDF_set_leading(PDF *p, float l)

Set the leading (distance between text baselines).

void PDF_set_text_rendering(PDF *p, byte mode)

Set the text rendering mode to one of the following values:

void PDF_set_horiz_scaling(PDF *p, float scale)

Set the horizontal text scaling to to a value of scale percent.

void PDF_set_text_rise(PDF *p, float rise)

Set the text rise parameter to a value of rise units.

void PDF_set_text_matrix(PDF *p, PDF_matrix m)

Set the text matrix which describes a transformation to be applied to the

current text font, e.g. for skewing the text.

void PDF_set_text_pos(PDF *p, float x, float y)

Set the current text position to (x, y).

0 fill text
1 stroke text
2 fill and stroke text
3 invisible text
4 fill text and add it to the clipping path
5 stroke text and add it to the clipping path
6 fill and stroke text and add it to the clipping path
7 add text to the clipping path

void PDF_set_char_spacing(PDF *p, float spacing)

Set the character spacing value, i.e., the horizontal shift of the current point

after placing the individual characters in a string. The spacing value is given

in text space units. It is reset to zero at the start of a new page. Other than

that, the user has to reset the spacing value if so desired.

void PDF_set_word_spacing(PDF *p, float spacing)

Set the word spacing value, i.e., the horizontal shift of the current point af-

ter individual words in a text line. The spacing value is given in text space

units. It is reset to zero at the start of a new page. Other than that, the user
Chapter 3: PDFlib API Reference 19

has to reset the spacing value if so desired.

void PDF_continue_text(PDF *p, char *text)

Move to the next line (determined by the leading parameter) and print text.

float PDF_stringwidth(PDF *p, byte *text)

Return the width of the text in the current font in the current coordinate

system.

Restrictions:

> A font must be selected before calling this function.

> The font must be one of the 14 core fonts, or a font metrics file (AFM)

must be available for the current font (see Section 2.5.1, »Font Embed-

ding and AFM Files«).

3.5 Graphics Functions
3.5.1 Graphics State and Coordinate System

All graphics state parameters are restored to their default values at the be-

ginning of a new page. The default values are documented in Section 2.4.2,

»The Graphics States«.

Note that functions related to the text state are listed in Section 3.4,

»Text Functions«.

Restriction:

> Don’t use graphics state functions within a path description.

void PDF_save(PDF *p)

Save the current graphics state.

void PDF_restore(PDF *p)

Restore the most recently saved graphics state.

void PDF_translate(PDF *p, float tx, float ty)

Translate the origin of the coordinate system to (tx, ty).

void PDF_scale(PDF *p, float sx, float sy)

Scale the coordinate system by sx and sy.

void PDF_rotate(PDF *p, float phi)

Rotate the coordinate system by phi degrees.

void PDF_setflat(PDF *p, float flat)
20 Chapter 3: PDFlib API Reference

Set the flatness to a value between 0 and 100 inclusive.

void PDF_setlinejoin(PDF *p, byte join)

Set the line join parameter to a value between 0 and 2 inclusive.

void PDF_setlinecap(PDF *p, byte cap)

Set the line linecap parameter to a value between 0 and 2 inclusive.

void PDF_setmiterlimit(PDF *p, float miter)

Set the miter limit to a value greater or equal to 1.

void PDF_setlinewidth(PDF *p, float width)

Set the current linewidth to width.

void PDF_setdash(PDF *p, float d1, float d2)

Set the current dash pattern to d1 white and d2 black units. In order to pro-

duce a solid line, choose d1 == d2 == 0.

void PDF_setpolydash(PDF *p, float darray, int length)

Set a more complicated dash pattern. The array of the given length contains

alternating values for black and white dash lengths. In order to produce a

solid line, choose length == 0 or length == 1.

3.5.2 Basic Drawing
void PDF_moveto(PDF *p, float x, float y)

Set the current point to (x, y).

void PDF_lineto(PDF *p, float x, float y)

Draw a line from the current point to (x, y).

void PDF_curveto(PDF *p,

float x1, float y1, float x2, float y2, float x3, float y3)

Draw a Bézier curve from the current point to (x3, y3), using (x1, y1) and

(x2, y2) as control points.

void PDF_circle(PDF *p, float x, float y, float r)

Draw a circle with center (x, y) and radius r.

void PDF_arc(PDF *p, float x, float y, float r, float alpha1, float alpha2)

Draw a circular arc with center (x, y), radius r, extending from alpha1 to

alpha2 degrees.

void PDF_rect(PDF *p, float x, float y, float width, float height)

Draw a rectangle with lower left corner (x, y) and the supplied width and

height.
Chapter 3: PDFlib API Reference 21

void PDF_closepath(PDF *p)

Close the current path, i.e. draw a line from the current point to the starting

point of the path.

3.5.3 Using the Path
void PDF_stroke(PDF *p)

Stroke (draw) the current path with the current line width and the current

stroke color. This operation clears the path.

void PDF_closepath_stroke(PDF *p)

Close the current path and stroke it with the current line width and the cur-

rent stroke color. This operation clears the path.

void PDF_fill(PDF *p)

Fill the interior of the current path with the current fill color.

void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color, respectively.

void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

void PDF_endpath(PDF *p)

End the current path.

void PDF_clip(PDF *p)

Use the current path as the clipping path.

3.6 Color Functions
Restriction:

> Don’t use color functions within a path description.

void PDF_setgray_fill(PDF *p, float g)

Set the current fill color to a gray value with 0 <= g <= 1.

void PDF_setgray_stroke(PDF *p, float g)

Set the current stroke color to a gray value with 0 <= g <= 1.

void PDF_setgray(PDF *p, float g)

Set the current fill and stroke color to a gray value with 0 <= g <= 1.

void PDF_setrgbcolor_fill(PDF *p, float red, float green, float blue)
22 Chapter 3: PDFlib API Reference

Set the current fill color to the supplied RGB values.

void PDF_setrgbcolor_stroke(PDF *p, float red, float green, float blue)

Set the current stroke color to the supplied RGB values.

void PDF_setrgbcolor(PDF *p, float red, float green, float blue)

Set the current fill and stroke color to the supplied RGB values.

3.7 Image Functions
PDF_image *PDF_open_JPEG(PDF *p, char *filename)

PDF_image *PDF_open_TIFF(PDF *p, char *filename)

PDF_image *PDF_open_GIF(PDF *p, char *filename)

Open and analyze a raster graphics file in one of the supported file formats.

The returned structure, if not NULL, contains crucial image parameters

such as width and height in pixels and the number of colors used. The

pointer to this structure must be used to embed the image data in a PDF

file.

Restrictions:

> Not all file formats may be supported in a particular PDFlib implemen-

tation due to licensing or technical issues.

> Not all flavors of a supported file format may actually work.

void PDF_close_image(PDF *p, PDF_image *image)

void PDF_close_JPEG(PDF *p, PDF_image *image)

void PDF_close_TIFF(PDF *p, PDF_image *image)

void PDF_close_GIF(PDF *p, PDF_image *image)

Close the supplied image file and free the image structure.

void PDF_place_image(

PDF *p, PDF_image *image, float x, float y, float scale)

Place the supplied image (which must have been retrieved with one of the

PDF_open_*() functions) on the current page. The lower left corner of the

image is placed at (x, y) on the current page and the image is scaled by the

supplied scaling factor.

void PDF_place_inline_image(

PDF *p, PDF_image *image, float x, float y, float scale)

Same as PDF_place_image(), but the image data is placed inline in the PDF

file. This should only be used in rare cases.

void PDF_put_image(PDF *p, PDF_image *image)

Put the image data in the PDF without »executing« it, i.e. the image data is
Chapter 3: PDFlib API Reference 23

only parked in the file for later reference.

void PDF_execute_image(

PDF *p, PDF_image *image, float x, float y, float scale)

»Execute« image data (place at (x, y) and scale) it. The image data must

previously have been put into the PDF file with PDF_put_image().

The put/execute technique is useful for re-using image data on several

places in a PDF file, e.g. a logo appearing on each page.

The image structure may only be closed after the last call to

PDF_execute_image().

void PDF_data_source_from_buf(

PDF *p, PDF_data_source *src, byte *buffer, long len)

Utility routine for converting a memory buffer to a PDFlib data source. This

may only be useful for internal and testing purposes.

3.8 Hypertext Functions
In this section, the term »hypertext« is used to denote features which do

not directly affect the printed layout, such as bookmarks and page transi-

tions.

void PDF_add_outline(PDF *p, char *text)

Add a PDF bookmark with the supplied text that points to the current page.

The text must be encoded with PDFDocEncoding.

Restriction:

> Currently bookmarks cannot be nested.

void PDF_set_transition(PDF *p, PDF_transition t)

Set the page transition effect for the current page. The following transition

types are supported:

void PDF_set_duration(PDF *p, float time)

Set the page display duration (in seconds) for self-animated PDFs.

trans_split Two lines sweeping across the screen reveal the page.
trans_blinds Multiple lines sweeping across the screen reveal the page.
trans_box A box reveals the page.
trans_wipe A single line sweeping across the screen reveals the page.
trans_dissolve The old page dissolves to reveal the page.
trans_glitter The dissolve effect moves from one screen edge to another.
trans_replace The old page is simply replaced by the new page (default).
24 Chapter 3: PDFlib API Reference

3.9 Convenience Stuff
PDF_pagesize a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, p11x17;

These structures hold page and width values for the most common page

formats which may be used in calls to PDF_begin_page().

3.10 Optimization Techniques
Re-using image data. Although the respective library functions are docu-

mented in Section 3.7, »Image Functions«, it might be worth pointing out

that PDFlib supports an important PDF optimization technique for using

repeated raster images.

Consider a layout with a constant logo or background on several pages.

In this situation it is possible to include the image data only once in the PDF

and generate only a reference on each of the pages where the graphic is

used. Simply open the image file, include the image data with

PDF_put_image() in the PDF, and call PDF_execute_image() each time you

want to place the logo or background on a particular page. Depending on

the image’s size and the number of occurences, this technique may prove as

a big space saver.

3.11 General Restrictions
Functional restrictions concerning PDFlib output:

> PDFlib-generated files are not optimized (in the sense of linearization

necessary for page-at-a-time download).

> PDFlib is currently unable to produce streaming output.

> PDFlib is currently not thread-safe, and therefore shouldn’t be used in

multi-threading applications.

4 Supplied Library Clients
This section briefly describes the sample library clients supplied with the

PDFlib distribution. These clients serve two purposes: they may be useful

programs in themselves, and they provide sample code for the application

programmer looking forward to using the PDFlib API.

hello [filename]

This is the »Hello, World!« sample discussed in Section 2.1, »A Programming
Chapter 4: Supplied Library Clients 25

Classic in C«.

If a file name is supplied on the command line, the named file will be

generated. Otherwise, the file name hello.pdf is used.

pdfdemo [filename]

This is a sample PDFlib application which employs many features of PDFlib

such as text and graphics output, embedding, rotating and scaling of sever-

al raster images. As well as supplying sample C code, pdfdemo serves as a

test bed for the library.

If a fil name is supplied on the command line, the named file will be

generated. Otherwise, the file name demo.pdf is used.

pdfclock [-c pagecount] -o filename

Generate a PDF with an analog clock face showing the current time. filena-

me is the name of the PDF file to be generated. If supplied on the command

line, pagecount specifies the number of pages to be generated. Pages are

generated with a delay of approximately one second. Since the PDF output

specifies a page advance delay with a wipe page transition, the output

somehow resembles a real analog clock. Try it!

pdfgraph -b -o filename datafile

An interpreter for a mini-language describing vector-oriented graphics.

Simple lines and color settings can be used to generate nice little demos or

real graphs. filename is the name of the PDF file to be generated, datafile

contains the drawing instructions. The -b option specifies binary PDF out-

put.

text2pdf [options] [textfile]

-b binary mode (default: ASCII)

-f fontname name of font to use

-h height page height in points

-m margin margin size in points

-s size font size

-o filename PDF output file name

-w width page width in points

-I path path to AFM and font directory

Convert the text in the supplied text file to PDF. Several aspects of the gen-

erated PDF can be controlled via command line options.

imagepdf [options] imagefile(s)

-a ASCII mode (default: binary)

-c print caption

-o <file> output file

Convert one or more graphics file(s) to PDF. Each file is placed on a separate

page of appropriate size. For easy reference a bookmark with the file name
26 Chapter 4: Supplied Library Clients

points to each page.

Note that the range of supported graphics file formats depends on your

particular PDFlib installation. Supported formats may include JPEG, GIF,

and TIFF.

5 Environment Bindings
PDFlib may be used in different environments, e.g., language bindings, Web

integration techniques, scripting languages. Several bindings are support-

ed in the distributed PDFlib package. Some hints related to these bindings

are given in this section.

5.1 C and C++ Language Bindings
Chapter 5: Environment Bindings 27

This is probably the most familiar binding to most programmers. Simply

use this manual to fabricate PDFlib C API calls from within your plain old C

program. Using some precaution, PDFlib may also be used from within C++.

5.2 Perl, Tcl, and Python Bindings
Based on a cute facility called SWIG1 (Simplified Wrapper and Interface

Generator) written by Dave Beazley <beazley@cs.utah.edu>, PDFlib can easi-

ly be integrated into the Perl, Tcl, and Python scripting languages. This

means you can call PDFlib API functions without any C programming by

simply writing a couple of script language instructions. PDFlib scripting

greatly simplifies small to medium programming tasks and is appropriate

in many application areas where the development, build, and debug over-

head of C is considered too high.

Note that you don’t need to install SWIG in order to make use of PDFlib

scripting. All necessary files are contained within the PDFlib distribution.

SWIG support for PDFlib was initiated and in its basic parts implemented

by Rainer Schaaf <Rainer.Schaaf@t-online.de> – thanks, Rainer2!

Implementing Scripting Support. Scripting support is implemented

through an interface definition file (supported with PDFlib), shared librar-

ies, and some helper files such as a module definition for Perl.

Restriction:

> Currently the activation of scripting support in PDFlib is not as much

automated as might be desirable.

> Scripting support may not be available on all platforms.

> There is currently no support for exception handling in PDFlib scripting.

PDFlib Script Programming. In order to avoid duplicating the PDFlib API

reference manual for all supported scripting languages, this manual is con-

sidered authoritative not only for the C binding but also for the scripting

1. More information on SWIG can be found at http://www.cs.utah.edu/~beazley/SWIG/swig.html
2. On a totally unrelated note, Rainer and his wonderful family live in a nice house close to the Alps –
definitely a great place for biking!

mailto:Rainer.Schaaf@t-online.de
mailto:Rainer.Schaaf@t-online.de
mailto:beazley@cs.utah.edu
mailto:beazley@cs.utah.edu
http://www.cs.utah.edu/~beazley/SWIG/swig.html

languages. Of course, the script programmer has to mentally adapt certain

conventions and syntactical issues from C to the relevant scripting lan-

guage. However, translating C API calls to, say, Perl calls should be a straight-

forward process. Indeed, I was able to translate a C PDFlib application to Perl

by simply deleting the include directives and adding dollar signs to all vari-

able names!

The »Hello world!« and PDFclock examples are available in the distribu-

tion as Perl, Tcl, and Python versions.
28 Chapter 5: Environment Bindings

5.3 Common Gateway Interface (CGI)
Due to the general nature of CGI, no special action must be taken in order to

use PDFlib within a CGI environment. The BINDINGS/CGI subdirectory con-

tains a very small example for integrating PDFlib programs in a Web server

environment. The MIME type for PDF files is as follows:

application/pdf

The clock.cgi sample generates a temporary PDF file using the pdfclock

demo client and sends the PDF data to the Web browser using the CGI inter-

face. After sending the data the temporary file is deleted:

#!/bin/sh

TMP=/var/tmp/clock.$$.pdf

echo Content-type: application/pdf

echo

pdfclock -o $TMP

cat $TMP

rm $TMP

exit 0

Of course, the necessary HTTP header(s) may also be generated directly by a

PDFlib application. The above CGI shell script is mainly for instructional

purposes.

5.4 Functional Programming
If you are interested in functional programming, you may want to take a

look at fun->pdf: Functional Writers of Portable Documents. Jan Skibinski

implemented an interface to PDFlib for several functional programming

languages:

> Equational Functional Language Q

> Ocaml

> Haskell

For more information on fun->pdf, check out

http://www.numeric-quest.com/funpdf

http://www.numeric-quest.com/funpdf

5.5 Future Bindings
Several other language and environment bindings are under consideration

for future PDFlib versions:

> Windows DLL

> ISAPI module for Microsoft Internet Information Server
Chapter 5: Environment Bindings 29

http://www.numeric-quest.com/funpdf

6 The PDFlib License
PDFlib is subject to the »ALADDIN FREE PUBLIC LICENSE«.1 The complete

text of the license agreement can be found in the file LICENSE. In short and

non-legal terms:

> You may use and distribute PDFlib non-commercially.

> You may develop free software with PDFlib.

> You may NOT sell any software based on PDFlib without prior written
30 Chapter 6: The PDFlib License

permission of the author.

> If you write PDFlib programs and sell them, you need a commercial

PDFlib license.

Note that this is only a 10-second-description which is not legally

binding. Only the text in the LICENSE file is considered to completely

describe the licensing conditions. Please contact the author for details on

using PDFlib commercially:

Consulting & Publishing

Thomas Merz

Tal 40

80331 München, Germany

http://www.ifconnection.de/~tm

tm@muc.de

fax +49/89/29 16 46 86

1. The license text was devised by L. Peter Deutsch of Aladdin Enterprises (Menlo Park, CA). Thanks Peter
for making available the text!

http://www.ifconnection.de/~tm
mailto:tm@muc.de

7 References
Although this manual is intended to be self-contained with respect to

PDFlib programming, it is highly recommended to obtain a copy of the PDF

specification for a deeper understanding and more detailed information:

[1] Portable Document Format Reference Manual, Version 1.2

Available from
Chapter 7: References 31

http://www.adobe.com/supportservice/devrelations/PDFs/TN/PDFSPEC.PDF

[2] The following book by the author of PDFlib is available in English and

German editions. It describes all aspects of integrating Acrobat in the

WWW:

English edition:

Thomas Merz:

Web Publishing with Acrobat/PDF.

With CD-ROM.

Springer-Verlag Heidelberg Berlin New York

1998

ISBN 3-540-63762-1

orders@springer.de

German edition:

Thomas Merz:

Mit Acrobat ins World Wide Web.

Effiziente Erstellung von PDF-Dateien und

ihre Einbindung ins Web.

Mit CD-ROM.

ISBN 3-9804943-1-4

Thomas Merz Verlag 1998

80331 München, Tal 40

Fax +49/89/29 16 46 86

http://www.ifconnection.de/~tm

mailto:orders@springer.de
http://www.ifconnection.de/~tm
http://www.adobe.com/supportservice/devrelations/PDFs/TN/PDFSPEC.PDF

8 Revision History
Version information on PDFlib itself can be found in the distribution. This

chapter documents changes to the PDFlib Reference Manual (this docu-

ment).

22 September 1997

> First public release of PDFlib version 0.4 and this manual.

25 February 1998
32 Chapter 8: Revision History

> Slightly expanded the manual to cover PDFlib version 0.5.

08 July 1998

> First attempt at describing PDFlib scripting support in PDFlib 0.6.

And now
for a little commercial...

http://www.ifconnection.de/~tm

PostScript & Acrobat/PDF
Applications, Troubleshooting, and Cross-Platform Publishing

Originally entitled the »PostScript and Acrobat Bible« in Ger-

man, this handbook achieves the seemingly impossible: it covers

this tricky and technical field in an entertaining manner with-

out getting bogged down in PostScript programming. The au-

thor genuinely wants to assist in overcoming cross-platform bar-

riers using MS-DOS, Windows, Macintosh or Unix and,

accordingly, neither the book nor the tools are limited to one

particular platform or operating system. The 9 chapters plus 3

appendixes run the entire gamut, from the very basics right up

to Ghostscript. The whole book is creatively designed, making

use of comical illustrations. In short, essential reading for all

technically minded users of PostScript and Acrobat/PDF.

Examples

• How to port EPS files or fonts from Mac to Windows to Unix

• Pros and cons of different PostScript drivers for Windows

• How to install PostScript fonts in the X Window System

• How to interpret and fix PostScript error messages

• How to edit or create PostScript fonts

• How to make EPS files editable again

• What's the Control-D business with PostScript files?

• How to make use of Level 2 without a Level 2 savvy driver

• How to create hypertext features in PDF files automatically

• How to use PDF files without Acrobat software

• Linking PDF files to the World Wide Web

• Performance optimization and prepress issues

Contents

Basics – Between Monitor and Printer – Encapsulated PostScript (EPS) – PostScript Fonts – PostScript

Level 2 – Gray Levels and Color – Display PostScript – Adobe Acrobat and PDF – Miscellaneous – Software on

the CD-ROM – Ghostscript Manual – Character Sets

PostScript & Acrobat/PDF

Applications, Troubleshooting, and Cross-Platform Publishing

By Thomas Merz. 420 pages including CD-ROM for MS-DOS/Windows/Macintosh/Unix

ISBN 3-540-60854-0, Springer-Verlag, Heidelberg, Berlin, New York

Springer-Verlag New York Inc., 175 Fifth Avenue, New York, NY 10010, U.S.A. Email: orders@springer.de

German Edition: Die PostScript- & Acrobat-Bibel

Was Sie schon immer über PostScript und Acrobat/PDF wissen wollten

Von Thomas Merz. 444 Seiten zweifarbig, 137 Abbildungen, Hardcover; DM 89,-

CD-ROM für MS-DOS/Windows/Macintosh/Unix beiliegend

ISBN 3-9804943-0-6, Thomas Merz Verlag, München, Fax +49/89/29 16 46 86

Index

A
AFM files 13
API reference 16

G
GIF images 14
graphics functions 19
Application Programming Interface (API)
16

ASCII vs. binary output 15

B
baseline compression 14
binary vs. ASCII output 15

graphics state 19
graphics states 11

H
hello program 25
Hello, world! 7, 8
hypertext functions 23
Index 35

C
C and C++ bindings 27
CGI (Common Gateway Interface) 28

clock sample 28
character sets 13
client programs 25
clients 25
clock CGI sample 28
clock demo program 25
color functions 21
color spaces 15
Common Gateway Interface (CGI) 28
compression 15
convenience stuff 24
coordinate system 11, 19

D
data structures 10
DLL 29
drawing functions 20

E
encoding 13
environment bindings 27
error handling 11, 17

F
features of PDFlib 5
font embedding 13
functional programming 28

I
image data, re-using 24
image file formats 14
image functions 22
imagepdf 26
ISAPI module 29

J
JPEG images 14

L
library clients 25
licensing conditions 30
limitations 24

M
Microsoft Internet Information Server 29

N
naming conventions 10

O
optimization 24

P
pagesize 24
path functions 21
PDF 21

36

PDF_arc() 21
PDF_begin_page() 17
PDF_circle() 21
PDF_clip() 21
PDF_close() 16
PDF_close_GIF() 22
PDF_close_image() 22
PDF_close_JPEG() 22
PDF_close_TIFF() 22
PDF_closepath() 21
PDF_closepath_fill_stroke() 21
PDF_closepath_stroke() 21

PDF_setlinewidth() 20
PDF_setmiterlimit() 20
PDF_setpolydash() 20
PDF_setrgbcolor() 22
PDF_setrgbcolor_fill() 22
PDF_setrgbcolor_stroke() 22
PDF_show() 18
PDF_show_xy() 18
PDF_stringwidth() 19
PDF_stroke() 21
PDF_translate() 20
pdfclock 25
Index

PDF_continue_text() 19
PDF_curveto() 20
PDF_data_source_from_buf() 23
PDF_end_page() 17
PDF_endpath() 21
PDF_execute_image() 23
PDF_fill() 21
PDF_fill_stroke() 21
PDF_free() 17
PDF_get_info() 16
PDF_lineto() 20
PDF_malloc() 17
PDF_moveto() 20
PDF_open() 16
PDF_open_GIF() 22
PDF_open_JPEG() 22
PDF_open_TIFF() 22
PDF_place_image() 22
PDF_place_inline_image() 23
PDF_put_image() 23
PDF_rect() 21
PDF_restore() 19
PDF_rotate() 20
PDF_save() 19
PDF_scale() 20
PDF_set_duration() 23
PDF_set_font() 18
PDF_set_horiz_scaling() 18
PDF_set_leading() 18
PDF_set_text_matrix() 18
PDF_set_text_pos() 18, 19
PDF_set_text_rendering() 18
PDF_set_text_rise() 18
PDF_set_transition() 23
PDF_setdash() 20
PDF_setflat() 20
PDF_setgray() 22
PDF_setgray_fill() 22
PDF_setgray_stroke() 22
PDF_setlinecap() 20
PDF_setlinejoin() 20

pdfdemo 25
pdfgraph 25
PDFlib

features 5
program structure 10

Perl 8, 27
problems 24
program structure 10
Python 8, 27

R
raster image functions 22
raster images 14
references 31

S
sample PDFlib clients 25
scripting 8
structure of PDFlib programs 10

T
Tcl 8, 27
text functions 18
text2pdf 25
TIFF images 14

W
Windows DLL 29

	1 Introduction
	2 PDFlib Programming
	2.1 A Programming Classic in C
	2.2 Scripting with Perl, Tcl, and Python
	2.3 General Programming Issues
	2.4 Coordinate System and Vector Graphics
	2.4.1 The Coordinate System
	2.4.2 The Graphics States

	2.5 Text Output and Fonts
	2.5.1 Font Embedding and AFM Files
	2.5.2 Character Sets and Encoding

	2.6 Raster Images
	2.7 Color Spaces
	2.7.1 Color Spaces for Text and Graphics
	2.7.2 Color Spaces for Raster Images

	2.8 Binary Output and Compression
	2.8.1 Binary and ASCII Output
	2.8.2 Compression

	3 PDFlib API Reference
	3.1 Data Structures
	3.2 General Functions
	3.3 Error Handling
	3.4 Text Functions
	3.5 Graphics Functions
	3.5.1 Graphics State and Coordinate System
	3.5.2 Basic Drawing
	3.5.3 Using the Path

	3.6 Color Functions
	3.7 Image Functions
	3.8 Hypertext Functions
	3.9 Convenience Stuff
	3.10 Optimization Techniques
	3.11 General Restrictions

	4 Supplied Library Clients
	5 Environment Bindings
	5.1 C and C++ Language Bindings
	5.2 Perl, Tcl, and Python Bindings
	5.3 Common Gateway Interface (CGI)
	5.4 Functional Programming
	5.5 Future Bindings

	6 The PDFlib License
	7 References
	8 Revision History
	Index

